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Abstract

A 12-state lumped-element model is presented for a flexible rotor supported by two
attractive force electromagnetic journal bearings. The rotor is modelled as a rigid disk with
radial mass unbalance mounted on a flexible, massless shaft with internal damping (Jeffcott
rotor). The disk is offset axially from the midspan of the shaft. Bearing dynamics in each
radial direction are modelled as a paralle] combination of a negative (unstable) spring and a
linear current-to-force actuator. The model includes translation and rotation of the rigid
mass and the first and second bending models of the flexible shaft, and is unique in that it
simultaneously includes internal shaft damping, gyroscopic effects, and the unstable nature
of the attractive force magnetic bearings.

The model is used to analyze the dependence of the system transmission zeros and
open-loop poles on system parameters. The dominant open-loop poles occur in
stable/unstable pairs with bandwidth dependent on the ratios of bearing (unstable)
stiffnesses to rotor mass and damping dependent on the shaft spin rate. The zeros occur in
complex conjugate pairs with bandwidth dependent on the ratios of shaft stiffnesses to
rotor mass and damping dependent on the shaft spin rate. Some of the transmission zeros

are non-minimum phase when the spin rate exceeds the shaft critical speed.

The transmission zeros and open-loop poles impact the design of magnetic bearing
control systems. The minimum loop cross-over frequency of the closed-loop system is the
speed of the unstable open-loop poles. And for super-critical shaft spin rates, the presence
of non-minimum phase zeros limits the disturbance rejection achievable at frequencies near
or above the shaft critical speed. Since non-minimum phase transmission zeros can only be
changed by changing the system inputs and/or outputs, closed-loop performance will be
limited for super-critical spin rates unless additional force or torque actuators are added.

This paper reports work performed as part of the author's master's thesis

[McCallum 1988], which was completed in the winter of '87 and spring of '88. This work
was funded under Draper Lab L.R.&D.
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The application of modern, multi-input multi-output (MIMO) control system design
methodologies to the control of flexible rotors is the focus of current research. These
methodologies include: linear quadratic gaussian (LQG) control; LQG/LTR (Linear
Quadratic Gaussian/Loop Transfer Recovery); and H-infinity optimal control.

In many magnetic bearing applications, such as aircraft engines, the suspended
rotor spins at speeds exceeding the first and second critical speeds. The application of
modern design techniques to the control of these high speed rotors requires a linear system
model that is simple yet includes all dynamic effects that are important at high speeds.

When rotors spin above their critical speed(s), rotor flexible body modes can be
excited. When the rotor flexes, internal damping can serve as a mechanism of instability
[Crandall 1980, Johnson 1986]. Thus, the model used for control design should include
rotor flexibility (first and second bending modes) and the effects of internal shaft damping.
Angular dynamics are also important at high spin rates since gyroscopic coupling between
input axes can be large for high speed rotors. Gyroscopic effects are particularly important
for jet engines, where the rotor-bearing system can be subject to relatively large rotation
rates. Coupling between angular dynamics and translational dynamics can be significant,
and should be included in the model. Finally, the unstable nature of attractive-force

magnetic bearings should also be included.

This paper presents a model that simultaneously includes first and second mode
bending, gyroscopic effects, the effects of internal shaft damping, and the unstable nature
of attractive-force magnetic bearings. The model is used to determine system open-loop
poles and transmission zeTos and their dependence on spin rate. The paper concludes with

a brief discussion of the implications for control system design.

The model presented here is intended to bridge the gap between models available in
the literature when the author's thesis research was performed and models used for detailed
rotor dynamic analysis. In practice, the model presented here should be augmented with
finite element or experimental analyses in a magnetic bearing control system development

effort.

503



Aydei3oriqiq ‘uonou jo suorienbo pozuesury - seopuaddy
[onuod J0J suonedrduwi - suoISn[Ouo))
SOJJZ UOISSIWISURI]
(sa10od) saneauadro door-uad(
SISATeuy
uonduoso(q [9pON
outmQ
UONDAIION

auinQ




The remainder of this paper is composed of three sections and two appendices. A
description of the lumped-element model is presented first. A discussion of the open-loop
eigenvalues and transmission zeros, and their variation with shaft spin rate, is then
presented. The paper concludes with a brief discussion of the implications of the system

dynamics for control.

Linearized equations of motion for the model are presented in the appendix. A
complete derivation of these equations, and a more thorou gh analysis of the dynamics, can
be found in [McCallum 1988]. A bibliography also appears in an appendix.
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Parameters used in the modelling effort are from a testbed designed at Draper Lab in
1987-1988. A testbed similar to the one shown above is now under construction.

The testbed consists of a flexible rotor supported at its ends by two attractive-force,
permanent magnet biased, electro-magnetic journal bearings. Inputs to the testbed are the
bearing currents in each axis. Measurements of the shaft-end positions are used for

control.

Although model parameters are from the Draper testbed, the model and results

presented here can be generalized to other actively-controlled rotors.

The model presented here considers only radial dynamics (radial translation and
rotation about shaft radii). Axial dynamics decouple from the radial dynamics to first

order.
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The rotor is modelled as a rigid flywheel with radial mass unbalance mounted on a
flexible, massless shaft with internal damping. In the model, the flywheel is allowed to
translate in radial directions and rotate about its radii. Each end of the shaft is modelled by
a rigid rod of appropriate length, with a parallel combination of a spring and a damper
acting between the rod end and the shaft wall in each of two perpendicular radial directions.
The shaft ends are allowed to move (independent of flywheel and of each other) in shaft
radial directions.

As desired, this rotor model includes gyroscopic effects, first and second mode
bending, the effects of static mass unbalance, and internal shaft damping. Note that, since
the rigid rods are not necessarily of equal length, the effects of coupling between angular
and translational dynamics are also included.

Assumptions used in modelling the rotor are -

« the rigid flywheel is dynamically balanced

« the shaft ends are axisymmetric, so that stiffness and damping are the same in all
radial directions

« shaft stress is linearly dependent on strain-rate (linear internal shaft damping)

» axial dynamics decouple from the radial dynamics

Dynamics of each bearing in each radial direction are modelled by a paraliel
combination of an unstable spring and a linear current to force actuator. Losses and high
frequency roll-off are ignored in the bearing model. Past magnetic bearing designs have
demonstrated input current to output force frequency responses that are flat to high
frequencies [Traxler 1984, Ulbrich 1984, Maslen, 1988]. This bearing model has
appeared often in the literature [ex. Downer 1986].

System inputs are the currents in coils for each axis of the two bearings. It is
assumed that (only) shaft end positions at the bearing are available. The measurements and
bearing forces are assumed to be in the same radial plane of the shaft - the effects of

noncollocation are not considered here.
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The figure above shows an end view of the model. Note that the shaft equivalent
springs and dampers rotate with the shaft. This model is sometimes called the Jeffcott rotor
in the literature [Johnson 1986]. Rotation of the dampers with the shaft is important for
modelling shaft whirl modes, since the equivalent damping of forward and backward whirl
modes is different for non-zero spin rates. In fact, the combination of shaft spin and

internal damping can add energy to the system for supercritical spin rates.
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Linearized equations of motion are derived in detail in [McCallum 1988], and are
presented in the appendix of this paper. The model that results for this system has 12

states, and predicts dynamics that are a function of shaft spin rate.

The linearized equations of motion were used to analyze the dependence of system
eigenvalues (poles) and transmission zeros on system parameters (stiffness, damping, spin

rate). Only the dependence on spin rate is discussed in this paper.

The model predicts 12 eigenvalues. 4 pair of eigenvalues correspond to rigid body

motion of the suspended rotor.

The first 4 rigid body poles correspond to angular motion of the flywheel. These
poles occur in 2 stable/unstable pairs. Since the shaft is much stiffer then the bearings, the
speed of these poles is dependent on the ratio of the equivalent rotational stiffness of the
bearings to the radial moment of inertia of the flywheel. For zero spin rate, these poles lie
on the real axis. As spin rate increases, the imaginary component of these poles increases

due to gyroscopic coupling.

4 poles correspond to translational motion of the flywheel. These poles occur in 2
stable/unstable pairs, each pair corresponding to displacement of the flywheel in the
horizontal or vertical direction. The speed of these poles is dependent on the ratio of the
bearing (unstable) stiffness to the rotor mass. For zero spin rate, these poles lie on the real
axis. As the spin rate increases, the translational poles have a small imaginary component
due to coupling with the angular rotational mode. If the flywheel were in the shaft center,

the translational motion poles would be independent of spin rate.

As the flywheel moves away from the center, coupling between the angular and
translational open-loop modes increases. In these cases, all rigid body modes will be a

combination of angular and translational motion.
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The 4 remaining poles correspond to shaft-end bending. These poles occur in
pairs, each pair corresponding to bending of one shaft end. The speed of these poles is the
ratio of the equivalent shaft end stiffness to the shaft end damping. For zero spin rate,
these poles lie on the real axis. As spin rate increases, the shaft-end bending poles have an
imaginary component equal to the shaft spin rate. This is because the projection of the
shaft-end deflection in the lab frame changes as the shaft rotates.
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Transmission zeros occur when, for some initial condition, a natural motion of the

system exists for which the output vector is zero for a non-zero input vector.

For our model, the outputs are the shaft-end positions and the inputs are the bearing
currents. For a transmission zero to exist, the shaft-ends must be stationary. And if the
shaft ends are stationary, bearing current is directly proportional to bearing force. Thus,
for this model a transmission zero occurs if and only if there is a natural motion of the
system where the shaft-ends remain fixed for non-zero bearing forces.

These natural motions correspond to motions the rotor would have if mounted in
perfectly rigid bearings. Thus, the frequencies and (part of) the directions of transmission
zeros are the same as the eigenvalues and eigenvectors of the rotor with both ends fixed.

The extensive literature on the dynamics of rotors in stiff bearings can be used to
predict transmission zeros. Any rotor that is unstable in stiff bearings will have non-

minimum phase transmission zeros.
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The model predicts 4 pair of transmission zeros. The first 2 pair correspond to
translational whirl (first-mode bending). 1 pair corresponds to forward translational whirl.
1 pair corresponds to backward translational whirl. Forward whirl is defined as a circular
rotor motion in the same direction as the rotor spin. Backward whirl is defined as circular
rotor motion in the direction opposite the rotor spin. Forward and backward translational

whirl are illustrated in above.

The second 2 pair of transmission zeros correspond to rotational whirl (second-
mode bending). Again, 1 pair corresponds to forward whirl, the other pair correspond to
backward whirl. For the rotational whirl case, forward whirl corresponds to motions
where the ends of the equivalent rigid rods move in circles in the same direction as the shaft

spin. Backward whirl is the opposite motion.
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The above figure shows the transmission zeros as a function of spin rate.

The translational motion transmission zeros have a frequency equal to the first
critical speed. The frequency of these zeros is only a weak function of rotational speed.
However, the damping of these zeros is a strong function of spin rate. Damping of the
backward whirl zeros increases with spin rate, while the damping of the forward whirl
zeros decreases with spin rate. The forward translational whirl zeros become non-
minimum phase for all spin rates exceeding the first critical speed (the translational

resonance frequency).

At zero speed, the rotational motion transmission zeros has a frequency equal to the
second critical speed. The frequency of these zeros is a strong function of spin rate, with
forward whirl zeros asymptotically approaching the gyroscopic whirl frequency. The
damping of the forward whirl zeros is a decreasing function of rotational speed - for spin
rates exceeding the second critical speed, the forward whirl zeros are non-minimum phase.
The damping of the backward rotational whirl zeros increases with spin rate, with the

frequency of these zeros asymptotically approaching zero.
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The open-loop system dynamics impact the design and achievable performance of

magnetic bearing control systems.

The minimum loop cross-over frequency of the closed-loop system is the speed of
the unstable open-loop poles associated with rigid body motion. This result has appeared
in the literature [Groom 1979, Downer 1986].

For spin rates at or above the rotors critical speed, the transmission zeros become
non-minimum phase. As a result, the achievable disturbance rejection of the closed-loop
system is limited at frequencies near or above the shaft critical speeds (the frequencies of
the zeros). In addition, when the transmission zeros become non-minimum phase, each
complex conjugate pair contributes 180 deg. of phase lag rather than phase lead. This
transition explains stability problems encountered when spinning a magnetically suspended

rotor through its critical speeds (as for systems with notch filters).

Non-minimum phase zeros cannot be changed through active control. Canceling
right-half plane zeros with compensator poles results in a system that it is internally
unstable. Zeros can only be changed by changing the system inputs or ouputs, i.c. by
adding additional actuators or sensors. The limitations imposed by non-minimum phase

zeros are physical limitations that cannot be overcome through feedback.
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Appendix A - Equations of Motion

This appendix presents linearized equations of motion for a magnetic bearing -
suspended rotor system. Included are a summary of the assumptions used in deriving the
equations, descriptions of reference frames, and a list of symbols. A detailed derivation of
the equations of motion can be found in [McCallum 1988].

A.l Summary of assumptions

The magnetically-suspended rotor is modelled as a rigid flywheel with radial mass
unbalance mounted on a flexible, massless shaft with internal dampiig. In the model, the
flywheel is allowed to translate in radial directions and rotate about its radii. The shaft ends
are allowed to move (independent of the flywheel and of each other) in radial directions.
The mass is not assumed to be at the midspan of the shaft, so that the forces at the shaft
ends are not equal. The rotor model includes: gyroscopic effects; the first and second
bending modes; the effects of internal shaft damping; and differences in bearing loads. The
rotor model excludes the effects of axial torque and axial translation. Further, the shafi is
assumed to be axially symmetric so that the shaft stiffness and damping are the same in all
radial directions. Also, the rotor is assumed to be configured such that the spin axis is
aligned with the axial principal axis of the rotor (i.e., the rotor is dynamically balanced) and
the radial moment of inertia is the same in all directions.

The magnetic bearings are modelled as a parallel combinatior. of an unstable spring
and a linear current-force actuator in each direction, i.e.,

Fyi =Kyi Yi + Ki Jiy; (A.1.1)
Bearing losses and high frequency dynamics are ignored.

It is assumed that (only) measurements of the shaft end positions are available.
Sensor dynamics are excluded. In addition, it is assumed that the bearing forces and the
sensor measurements are at the same points on the shaft - non-colocation effects are
ignored. Justifications for the assumptions listed here can be found in [McCallum 1988].

'This model appears often in the literature.



A.2 Reference frames

The system state is described by the position and velocity of the flywheel's
geometric center, the positions of the shaft ends, and rotations of the flywheel about its
radii. Positions and velocities are described in the cartesian reference frame XYZ shown in
Figure A.1. This frame is fixed to "ground" with its origin at the force-free equilibrium
position of the flywheel's geometric center. The X-axis is horizontal and coincident with
the centerline of the shaft when the system is in force-free equilibrium. The Y-axis of the
frame is vertical. The Z-axis is horizontal and coincident with a radius of the flywheel at
equilbrium. Figure A.1 also shows the frames xyz and 123, which are used in [McCallum
1988] to derive the equations of motion. The rotational motions of the flywhcel are
described in terms of the gyroscopic coordinates illustrated in Figures A.2 and A.3.

x AY

Figure A.1 - Reference frames
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Figure A.3 - Gyroscopic coordinates

A.3 Equations of Motion

The system states (x) are chosen as the flywheel translational and rotational

positions and velocities and the positions of the shaft ends

. . . . T
x=|Y, Y. Z Z & & &2 82 Y121 Y22, (A.3.1)



System inputs are the changes in bearing coil currents from their equilibrium values
u=[iy; iz ivz2 iz2JT (A.3.2)
System outputs are the positions of the shaft ends
v =Y Z1 Y2 21T (A.3.3)

Linearized equations of motion for the rotor-bearing system can be written in state-space

form as:
x=A(wx+Bu+d (A.3.4)
y=Cx+Du+n (A.3.5)
where
0
u @ Sin (0t + 80) + u @? Cos (wl+60)-g+%
0
-ud)Cos(u)t+90)+uwISin(wl+eo)+%

0

&

d= Ir

0

&

Ir

dayy

bl

dZ,

bl

dy,

b2

173
| b2 _ (A.3.6)
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000000001000
c-{000000000100

000000000010

000000000001 (A.3.9)
D =[0(x4)] (A.3.10)

Note that, in this representation, radial mass unbalance is modelled as an input force

disturbance. The effects of dynamic balance could be included similarly. The effects of
measurement center offset could be added to this mode! as additive measurement noise.

A.4

b;
d2
d&;
d&,
dyr
dz;
dZr
la
Ir

List of Symbols

= equivalent damping of shaftend i

= vector of input disturbances

= torque disturbance acting on the rotor in the &;-direction
= torque disturbance acting on the rotor in the Ey-direction
= force disturbance acting on shaft end i in the Y-direction
= force disturbance acting on the rotor in the Y -direction
= force disturbance acting on shaftend i in the Z-direction
— force disturbance acting on the rotor in the Z-direction

= axial moment of inertia

= radial moment of inertia

= current in the Y-coil(s) at shaft end i

= current in the Z-coil(s) at shaft end i

= equivalent stiffness of shaft endi

= equivalent (unstable) stiffness of bearing at shaft end i in the Y -direction
= equivalent (unstable) stiffness of bearing at shaft end i in the Z-direction
= equivalent length of shaftend i

= rotor mass

= $ensor noise

= control inputs

= radial mass unbalance distance

= shaft spin rate

2Bold denotes a vector.
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X = state vector

€ = gyroscopic coordinate, approximately equal to rotation about the +Y-axis
& = gyroscopic coordinate, approximately equal to rotation about the +Z-axis
y = system outputs

Y; = displacement of shaft end i in the Y-direction

Y, = displacement of the rigid rotor in the Y-direction

Z; = displacement of shaft end i in the Z-direction

Z = rotor displacement in the Z-direction

t =time

) = orientation of the radial unbalance vector with respect to the +1 axis

0, ¢, y = Euler angles describing rotor orientation
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